DP-100Jテスト難易度、DP-100J最新試験 - Microsoft DP-100J試験感想 - Goldmile-Infobiz

あなたはこの重要な試験を準備するのは時間とお金がかかると聞いたことがあるかもしれませんが、それは我々提供するMicrosoftのDP-100Jテスト難易度ソフトを利用しなかったからです。複雑な整理と分析の過程はもう我々に完了されました。あなたは高効率の復習とMicrosoftのDP-100Jテスト難易度試験の成功を経験する必要があればいいです。 Goldmile-InfobizのMicrosoftのDP-100Jテスト難易度「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験トレーニング資料はIT職員としてのあなたがIT試験に受かる不可欠なトレーニング資料です。Goldmile-InfobizのMicrosoftのDP-100Jテスト難易度試験トレーニング資料はカバー率が高くて、更新のスピードも速くて、完全なトレーニング資料ですから、Goldmile-Infobiz を手に入れたら、全てのIT認証が恐くなくなります。 数年間の発展で我々Goldmile-Infobizはもっと多くの資源と経験を得ています。

Microsoft Azure DP-100J いろいろな受験生に通用します。

Microsoft DP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)テスト難易度試験認定書はIT職員野給料増加と仕事の昇進にとって、大切なものです。 MicrosoftのDP-100J 学習資料ソフトを使用するすべての人を有効にするために最も快適なレビュープロセスを得ることができ、我々は、MicrosoftのDP-100J 学習資料の資料を提供し、PDF、オンラインバージョン、およびソフトバージョンを含んでいます。あなたの愛用する版を利用して、あなたは簡単に最短時間を使用してMicrosoftのDP-100J 学習資料試験に合格することができ、あなたのIT機能を最も権威の国際的な認識を得ます!

多くの受験者は、私たちのDP-100Jテスト難易度練習試験をすることに特権を感じています。そして、私たちのウェブサイトは、市場でのとても有名で、インターネット上で簡単に見つけられます。現在の社会で、DP-100Jテスト難易度試験に参加する人がますます多くなる傾向があります。

Microsoft DP-100Jテスト難易度 - 実際は試験に合格するコツがあるのですよ。

Goldmile-Infobizは長年にわたってずっとIT認定試験に関連するDP-100Jテスト難易度参考書を提供しています。これは受験生の皆さんに検証されたウェブサイトで、一番優秀な試験DP-100Jテスト難易度問題集を提供することができます。Goldmile-Infobizは全面的に受験生の利益を保証します。皆さんからいろいろな好評をもらいました。しかも、Goldmile-Infobizは当面の市場で皆さんが一番信頼できるサイトです。

Goldmile-Infobizは君の試験を最も早い時間で合格できる。学習教材がどんな問題があっても、あるいは君の試験を失敗したら、私たちは全額返金するのを保証いたします。

DP-100J PDF DEMO:

QUESTION NO: 1
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 2
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 3
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

QUESTION NO: 4
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 5
提供されているトレーニングセットを使用して、バイナリ分類モデルを構築しています。
トレーニングセットは2つのクラス間で不均衡です。
データの不均衡を解決する必要があります。
この目標を達成するための3つの可能な方法は何ですか?各正解は完全なソリューションを
示します注:
それぞれの正しい選択には1ポイントの価値があります。
A. モデルの評価指標として精度を使用します。
B. トレーニング機能セットを正規化します。
C. マイノリティクラスで合成サンプルを生成します。
D. 分類にペナルティを科す
E.
アンダーサンプリングまたはオーバーサンプリングを使用してデータセットをリサンプリン
グします
Answer: A,C,E

Goldmile-InfobizのMicrosoftのMicrosoft MS-700-KR試験トレーニング資料は正確性が高くて、カバー率も広い。 Goldmile-Infobizは君の早くMicrosoftのCIPS L5M8認定試験に合格するために、きみのもっと輝い未来のために、君の他人に羨ましいほど給料のために、ずっと努力しています。 UiPath UiPath-ABAAv1 - もしGoldmile-Infobizの学習教材を購入した後、どんな問題があれば、或いは試験に不合格になる場合は、私たちが全額返金することを保証いたします。 Fortinet NSE7_SSE_AD-25 - Goldmile-Infobizを信じて、私たちは君のそばにいるから。 Snowflake GES-C01 - あなたはどのような方式で試験を準備するのが好きですか。

Updated: May 28, 2022