無事試験に合格しました。Goldmile-Infobizから大変助かりました。」と感謝します。 Goldmile-InfobizはIT認定試験のDP-100J日本語版復習指南問題集を提供して皆さんを助けるウエブサイトです。Goldmile-Infobizは先輩の経験を生かして暦年の試験の材料を編集することを通して、最高のDP-100J日本語版復習指南問題集を作成しました。 我々Goldmile-InfobizのMicrosoft DP-100J日本語版復習指南試験問題と試験解答の正確さは、あなたの試験準備をより簡単にし、あなたが試験に高いポイントを得ることを保証します。
DP-100J日本語版復習指南試験は難しいです。
長年の努力を通じて、Goldmile-InfobizのMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)日本語版復習指南認定試験の合格率が100パーセントになっていました。 Microsoft DP-100J テスト難易度試験の合格のために、Goldmile-Infobizを選択してください。Goldmile-InfobizはMicrosoftのDP-100J テスト難易度「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」試験に関する完全な資料を唯一のサービスを提供するサイトでございます。
Goldmile-Infobizは君のMicrosoftのDP-100J日本語版復習指南認定試験に合格するという夢を叶えるための存在です。あなたはGoldmile-Infobizの学習教材を購入した後、私たちは一年間で無料更新サービスを提供することができます。もし試験に不合格になる場合があれば、私たちが全額返金することを保証いたします。
Microsoft DP-100J日本語版復習指南 - あなたが安心で試験のために準備すればいいです。
弊社が提供した問題集がほかのインターネットに比べて問題のカーバ範囲がもっと広くて対応性が強い長所があります。Goldmile-Infobizが持つべきなIT問題集を提供するサイトでございます。
MicrosoftのDP-100J日本語版復習指南試験に合格して彼らのよりよい仕事を探せるチャンスは多くなります。あなたに安心させるために、我々のソフトを利用してあなたが試験に失敗したら、我々は全額で返金するのを承諾してよりよいMicrosoftのDP-100J日本語版復習指南ソフトを開発し続けます。
DP-100J PDF DEMO:
QUESTION NO: 1
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 2
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
QUESTION NO: 3
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
QUESTION NO: 4
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 5
提供されているトレーニングセットを使用して、バイナリ分類モデルを構築しています。
トレーニングセットは2つのクラス間で不均衡です。
データの不均衡を解決する必要があります。
この目標を達成するための3つの可能な方法は何ですか?各正解は完全なソリューションを
示します注:
それぞれの正しい選択には1ポイントの価値があります。
A. モデルの評価指標として精度を使用します。
B. トレーニング機能セットを正規化します。
C. マイノリティクラスで合成サンプルを生成します。
D. 分類にペナルティを科す
E.
アンダーサンプリングまたはオーバーサンプリングを使用してデータセットをリサンプリン
グします
Answer: A,C,E
PCA CSDB - テストの時に有効なツルが必要でございます。 何十ユーロだけでこのような頼もしいMicrosoftのSalesforce Experience-Cloud-Consultant-JPN試験の資料を得ることができます。 SAP C_ARCON_2508 - Goldmile-Infobizはあなたが自分の目標を達成することにヘルプを差し上げられます。 弊社のMicrosoftのHP HPE7-A07練習問題の通過率は他のサイトに比較して高いです。 HP HPE7-A07 - IT認証試験に合格したい受験生の皆さんはきっと試験の準備をするために大変悩んでいるでしょう。
Updated: May 28, 2022