Microsoft DP-100J最新試験情報資格認定はIT技術領域に従事する人に必要があります。我々社のMicrosoft DP-100J最新試験情報試験練習問題はあなたに試験うま合格できるのを支援します。あなたの取得したMicrosoft DP-100J最新試験情報資格認定は、仕事中に核心技術知識を同僚に認可されるし、あなたの技術信頼度を増強できます。 Microsoft DP-100J最新試験情報認証はIT業界にとても重要な地位があることがみんなが、たやすくその証本をとることはではありません。いまの市場にとてもよい問題集が探すことは難しいです。 また、DP-100J最新試験情報問題集は的中率が高いです。
Microsoft Azure DP-100J 迷ってないください。
Goldmile-Infobizの問題集はIT専門家がMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)最新試験情報「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認証試験について自分の知識と経験を利用して研究したものでございます。 それに、MicrosoftのDP-100J 日本語学習内容の試験の実践経験やテストダンプにも含まれています。Goldmile-Infobizは受験生たちを助けて試験の準備をして、試験に合格するサイトですから、受験生のトレーニングにいろいろな便利を差し上げます。
弊社が提供したすべての勉強資料と他のトレーニング資料はコスト効率の良い製品で、サイトが一年間の無料更新サービスを提供します。ですから、弊社のトレーニング製品はあなたが試験に合格することを助けにならなかったら、全額で返金することを保証します。MicrosoftのDP-100J最新試験情報のオンラインサービスのスタディガイドを買いたかったら、Goldmile-Infobizを買うのを薦めています。
Microsoft DP-100J最新試験情報 - でも大丈夫です。
あなたが悲しいとき、勉強したほうがいいです。勉強があなたに無敵な位置に立たせます。Goldmile-InfobizのMicrosoftのDP-100J最新試験情報試験トレーニング資料は同様にあなたに無敵な位置に立たせることができます。このトレーニング資料を手に入れたら、あなたは国際的に認可されたMicrosoftのDP-100J最新試験情報認定試験に合格することができるようになります。そうしたら、金銭と地位を含むあなたの生活は向上させることができます。そのとき、あなたはまだ悲しいですか。いいえ、あなたはきっと非常に誇りに思うでしょう。Goldmile-Infobizがそんなに良いトレーニング資料を提供してあげることを感謝すべきです。Goldmile-Infobizはあなたが方途を失うときにヘルプを提供します。あなたの独自の品質を向上させるだけでなく、完璧な人生価値を実現することも助けます。
この問題集には実際の試験に出る可能性のあるすべての問題が含まれています。従って、この問題集を真面目に学ぶ限り、DP-100J最新試験情報認定試験に合格するのは難しいことではありません。
DP-100J PDF DEMO:
QUESTION NO: 1
Azure Machine Learning
Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります
。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール
を使用して、欠落データを処理する予定です。
データクリーニング方法を選択する必要があります。
どの方法を使用する必要がありますか?
A. 確率的PACを使用して置換
B. 正規化
C. MICEを使用して交換
D. 合成マイノリティ
Answer: A
QUESTION NO: 2
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります
。
このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 4
機械学習モデルを使用してインテリジェントなソリューションを構築しています。
環境は次の要件をサポートする必要があります。
*データサイエンティストはクラウド環境でノートブックを構築する必要がある
*データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと
モデル構築を使用する必要があります。
*動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート
ブックを展開する必要があります。
*ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ
ります。
環境を作成する必要があります。
どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ
ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。
Answer:
Explanation
Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2:
Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure
HDInsight cluster.
Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark
Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.
Step 3: Create and execute the Zeppelin notebooks on the cluster
Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment.
Notebooks must be exportable to be version controlled locally.
References:
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook
https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html
QUESTION NO: 5
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
Microsoft DP-100J - Goldmile-Infobizのトレーニング資料は100パーセントの合格率を保証しますから、あなたのニーズを満たすことができます。 Goldmile-InfobizのBCS PC-BA-FBA-20問題集はあなたを楽に試験の準備をやらせます。 Cisco 350-801 - 確かに、これは困難な試験です。 もし君はまだ心配することがあったら、私たちのMicrosoftのCohesity COH-285問題集を購入する前に、一部分のフリーな試験問題と解答をダンロードして、試用してみることができます。 SAP C_SIGPM_2403 - 試験に準備する方法が色々ありますが、最も高効率なのは、きっと良いツールを利用することですね。
Updated: May 28, 2022