このトレーニング資料を持っていたら、試験のために充分の準備をすることができます。そうしたら、試験に受かる信心も持つようになります。Goldmile-InfobizのMicrosoftのDP-100J試験勉強攻略試験トレーニング資料は特別に受験生を対象として研究されたものです。 もしGoldmile-Infobizの学習教材を購入した後、どんな問題があれば、或いは試験に不合格になる場合は、私たちが全額返金することを保証いたします。Goldmile-Infobizを信じて、私たちは君のそばにいるから。 この問題集はDP-100J試験勉強攻略認定試験に関連する最も優秀な参考書ですから。
Microsoft Azure DP-100J 試験に失敗したら、弊社は全額で返金します。
Goldmile-Infobizは認定で優秀なIT資料のウエブサイトで、ここでMicrosoft DP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)試験勉強攻略認定試験の先輩の経験と暦年の試験の材料を見つけることができるとともに部分の最新の試験の題目と詳しい回答を無料にダウンロードこともできますよ。 これはあなたに安心で弊社の商品を購入させるためです。あなたはMicrosoftのDP-100J サンプル問題集試験を準備しているとき、あなたの時間とお金を無駄にしないであなたに試験に一番有効な助けを提供するのは我々がMicrosoftのDP-100J サンプル問題集ソフトを作成する達成したい目標です。
Goldmile-InfobizはIT試験問題集を提供するウエブダイトで、ここによく分かります。最もよくて最新で資料を提供いたします。こうして、君は安心で試験の準備を行ってください。
Microsoft DP-100J試験勉強攻略 - 我々はあなたに向いて適当の資料を選びます。
Microsoft DP-100J試験勉強攻略認定資格試験の難しさなので、我々サイトDP-100J試験勉強攻略であなたに適当する認定資格試験問題集を見つけるし、本当の試験での試験問題の難しさを克服することができます。当社はMicrosoft DP-100J試験勉強攻略認定試験の最新要求にいつもでも関心を寄せて、最新かつ質高い模擬試験問題集を準備します。また、購入する前に、無料のPDF版デモをダウンロードして信頼性を確認することができます。
MicrosoftのDP-100J試験勉強攻略試験は挑戦がある認定試験です。現在、書籍の以外にインターネットは知識の宝庫として見られています。
DP-100J PDF DEMO:
QUESTION NO: 1
提供されているトレーニングセットを使用して、バイナリ分類モデルを構築しています。
トレーニングセットは2つのクラス間で不均衡です。
データの不均衡を解決する必要があります。
この目標を達成するための3つの可能な方法は何ですか?各正解は完全なソリューションを
示します注:
それぞれの正しい選択には1ポイントの価値があります。
A. モデルの評価指標として精度を使用します。
B. トレーニング機能セットを正規化します。
C. マイノリティクラスで合成サンプルを生成します。
D. 分類にペナルティを科す
E.
アンダーサンプリングまたはオーバーサンプリングを使用してデータセットをリサンプリン
グします
Answer: A,C,E
QUESTION NO: 2
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
QUESTION NO: 3
複数の生徒に実践的なワークショップを実施する予定です。ワークショップでは、Pythonを
使用したデータ視覚化の作成に焦点を当てます。各生徒は、インターネットにアクセスでき
るデバイスを使用します。
学生用デバイスはPython開発用に構成されていません。学生には、デバイスにソフトウェア
をインストールするための管理者アクセス権がありません。学生はAzureサブスクリプショ
ンを利用できません。
学生がPythonベースのデータ視覚化コードを実行できることを確認する必要があります。
どのAzureツールを使用する必要がありますか?
A. Anaconda Data Science Platform
B. Azure Machine Learning Service
C. Azure Notebooks
D. Azure BatchAl
Answer: C
Explanation
References:
https://notebooks.azure.com/
QUESTION NO: 4
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 5
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
そして、私たちは十分な耐久力を持って、ずっとCohesity COH-285練習資料の研究に取り組んでいます。 APMG-International ISO-IEC-27001-Foundation - 逆境は人をテストすることができます。 ATD CPTD - もし弊社を選ばれば、100%の合格率を保証でございます。 Workday Workday-Pro-Integrations - 自分のレベルを高めたいですか。 Goldmile-Infobiz提供した商品の品質はとても良くて、しかも更新のスピードももっともはやくて、もし君はMicrosoftのIIA IIA-CIA-Part2-JPNの認証試験に関する学習資料をしっかり勉強して、成功することも簡単になります。
Updated: May 28, 2022