改善されているソフトはあなたのMicrosoftのDP-100J試験対策書試験の復習の効率を高めることができます。IT業界での競争がますます激しくなるうちに、あなたの能力をどのように証明しますか。MicrosoftのDP-100J試験対策書試験に合格するのは説得力を持っています。 長年にわたり、Goldmile-InfobizはずっとIT認定試験を受験する皆さんに最良かつ最も信頼できる参考資料を提供するために取り組んでいます。IT認定試験の出題範囲に対して、Goldmile-Infobizは豊富な経験を持っています。 Goldmile-InfobizのDP-100J試験対策書問題集を通して、他の人が手に入れない資格認証を簡単に受け取ります。
Microsoft Azure DP-100J いろいろな受験生に通用します。
それで、我々社の無料のMicrosoft DP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)試験対策書デモを参考して、あなたに相応しい問題集を入手します。 MicrosoftのDP-100J トレーニング費用ソフトを使用するすべての人を有効にするために最も快適なレビュープロセスを得ることができ、我々は、MicrosoftのDP-100J トレーニング費用の資料を提供し、PDF、オンラインバージョン、およびソフトバージョンを含んでいます。あなたの愛用する版を利用して、あなたは簡単に最短時間を使用してMicrosoftのDP-100J トレーニング費用試験に合格することができ、あなたのIT機能を最も権威の国際的な認識を得ます!
そして、私たちのウェブサイトは、市場でのとても有名で、インターネット上で簡単に見つけられます。現在の社会で、DP-100J試験対策書試験に参加する人がますます多くなる傾向があります。市場の巨大な練習材料からDP-100J試験対策書の学習教材を手に入れようとする人も増えています。
Microsoft DP-100J試験対策書 - 無事試験に合格しました。
Goldmile-Infobizの商品はIT業界の専門家が自分の豊かな知識と経験を利用して認証試験に対して研究出たので品質がいいの試験の資料でございます。受験者がGoldmile-Infobizを選択したら高度専門の試験に100%合格することが問題にならないと保証いたします。
我々Goldmile-InfobizのMicrosoft DP-100J試験対策書試験問題と試験解答の正確さは、あなたの試験準備をより簡単にし、あなたが試験に高いポイントを得ることを保証します。Microsoft DP-100J試験対策書資格試験に参加する意向があれば、当社のGoldmile-Infobizから自分に相応しい受験対策解説集を選らんで、認定試験の学習教材として勉強します。
DP-100J PDF DEMO:
QUESTION NO: 1
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan
QUESTION NO: 2
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/
QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data
QUESTION NO: 4
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
QUESTION NO: 5
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります
。
このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data
Goldmile-InfobizはMicrosoftのWGU Information-Technology-Management認定試験に便利なサービスを提供するサイトで、従来の試験によってGoldmile-Infobiz が今年のMicrosoftのWGU Information-Technology-Management認定試験を予測してもっとも真実に近い問題集を研究し続けます。 Microsoft MD-102-JPN試験は難しいです。 IIA IIA-CIA-Part2-JPN - 君に短い時間に大量のITの専門知識を補充させています。 Microsoft CheckPoint 156-315.81試験の合格のために、Goldmile-Infobizを選択してください。 IIA IIA-CIA-Part2-CN - Goldmile-Infobizを選択したら、成功が遠くではありません。
Updated: May 28, 2022