DP-100J試験概要、DP-100J過去問 - Microsoft DP-100J模擬問題集 - Goldmile-Infobiz

MicrosoftのDP-100J試験概要試験に関する権威のある学習教材を見つけないで、悩んでいますか?世界中での各地の人々はほとんどMicrosoftのDP-100J試験概要試験を受験しています。MicrosoftのDP-100J試験概要の認証試験の高品質の資料を提供しているユニークなサイトはGoldmile-Infobizです。もし君はまだ心配することがあったら、私たちのMicrosoftのDP-100J試験概要問題集を購入する前に、一部分のフリーな試験問題と解答をダンロードして、試用してみることができます。 また、購入する前に、無料でDP-100J試験概要のPDF版デモをダウンロードでき、信頼性を確認することができます。Microsoft DP-100J試験概要認定資格試験が難しいので、弊社のDP-100J試験概要問題集はあなたに適当する認定資格試験問題集を見つけるし、本当の試験問題の難しさを克服することができます。 Goldmile-Infobizは君の成功のために、最も質の良いMicrosoftのDP-100J試験概要試験問題と解答を提供します。

Microsoft Azure DP-100J それで、不必要な損失を避けできます。

Goldmile-Infobizは100%でMicrosoftのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)試験概要「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認定試験に合格するのを保証いたします。 弊社のMicrosoftのDP-100J 過去問練習問題を利用したら、あなたは気楽に勉強するだけではなく、順調に試験に合格します。多くの人々はMicrosoftのDP-100J 過去問試験に合格できるのは難しいことであると思っています。

Goldmile-Infobizのことに興味があったらネットで提供した部分資料をダウンロードしてください。MicrosoftのDP-100J試験概要認証試験の合格証は多くのIT者になる夢を持つ方がとりたいです。でも、その試験はITの専門知識と経験が必要なので、合格するために一般的にも大量の時間とエネルギーをかからなければならなくて、助簡単ではありません。

Microsoft DP-100J試験概要 - 何の問題があったらお気軽に聞いてください。

何でも上昇しているこの時代に、自分の制限を突破したくないのですか。給料を倍増させることも不可能ではないです。MicrosoftのDP-100J試験概要試験に合格したら、あなたは夢を実現することができます。Goldmile-Infobizはあなたの最高のトレーニング資料を提供して、100パーセントの合格率を保証します。これは本当のことです。疑いなくすぐGoldmile-InfobizのMicrosoftのDP-100J試験概要試験トレーニング資料を購入しましょう。

それに、あなたに極大な便利と快適をもたらせます。実践の検査に何度も合格したこのサイトは試験問題と解答を提供しています。

DP-100J PDF DEMO:

QUESTION NO: 1
Azure Machine Learning
Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります
。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール
を使用して、欠落データを処理する予定です。
データクリーニング方法を選択する必要があります。
どの方法を使用する必要がありますか?
A. 確率的PACを使用して置換
B. 正規化
C. MICEを使用して交換
D. 合成マイノリティ
Answer: A

QUESTION NO: 2
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 3
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 4
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 5
機械学習モデルを使用してインテリジェントなソリューションを構築しています。
環境は次の要件をサポートする必要があります。
*データサイエンティストはクラウド環境でノートブックを構築する必要がある
*データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと
モデル構築を使用する必要があります。
*動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート
ブックを展開する必要があります。
*ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ
ります。
環境を作成する必要があります。
どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ
ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。
Answer:
Explanation
Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2:
Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure
HDInsight cluster.
Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark
Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.
Step 3: Create and execute the Zeppelin notebooks on the cluster
Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment.
Notebooks must be exportable to be version controlled locally.
References:
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook
https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html

MicrosoftのCisco 350-501認定試験は現在のいろいろなIT認定試験における最も価値のある資格の一つです。 MicrosoftのMicrosoft MB-335試験はIT業種に欠くことができない認証ですから、試験に合格することに困っている人々はたくさんいます。 MSSC CLT - 今はそのようにしていますか。 Cisco 400-007 - これは受験生の皆さんが資料を利用した後の結果です。 Goldmile-InfobizのNAHQ CPHQ問題集というものをきっと聞いたことがあるでしょう。

Updated: May 28, 2022