DP-100J試験関連赤本 & DP-100Jシュミレーション問題集 - DP-100J技術問題 - Goldmile-Infobiz

MicrosoftのDP-100J試験関連赤本認定試験を受けることを決めたら、Goldmile-Infobizがそばにいて差し上げますよ。Goldmile-Infobizはあなたが自分の目標を達成することにヘルプを差し上げられます。あなたがMicrosoftのDP-100J試験関連赤本「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認定試験に合格する需要を我々はよく知っていますから、あなたに高品質の問題集と科学的なテストを提供して、あなたが気楽に認定試験に受かることにヘルプを提供するのは我々の約束です。 Goldmile-Infobizの問題集を買ったら1年間の無料オンラインのアップデートを提供する一方で、試験に失敗したら、お客様に全額で返金いたします。 IT認証試験に合格したい受験生の皆さんはきっと試験の準備をするために大変悩んでいるでしょう。

Microsoft Azure DP-100J 明るい未来を準備してあげます。

もしGoldmile-InfobizのDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)試験関連赤本問題集を利用してからやはりDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)試験関連赤本認定試験に失敗すれば、あなたは問題集を購入する費用を全部取り返すことができます。 Goldmile-Infobizというサイトは素晴らしいソースサイトで、MicrosoftのDP-100J 的中合格問題集の試験材料、研究材料、技術材料や詳しい解答に含まれています。問題集が提供したサイトは近年で急速に増加しています。

Goldmile-Infobizは全面的に受験生の利益を保証します。皆さんからいろいろな好評をもらいました。しかも、Goldmile-Infobizは当面の市場で皆さんが一番信頼できるサイトです。

Microsoft DP-100J試験関連赤本 - 我々Goldmile-Infobizはこの3つを提供します。

Goldmile-InfobizのDP-100J試験関連赤本問題集はあなたを楽に試験の準備をやらせます。それに、もし最初で試験を受ける場合、試験のソフトウェアのバージョンを使用することができます。これは完全に実際の試験雰囲気とフォーマットをシミュレートするソフトウェアですから。このソフトで、あなたは事前に実際の試験を感じることができます。そうすれば、実際のDP-100J試験関連赤本試験を受けるときに緊張をすることはないです。ですから、心のリラックスした状態で試験に出る問題を対応することができ、あなたの正常なレベルをプレイすることもできます。

数年以来の試験問題集を研究しています。現在あなたに提供するのは大切なMicrosoftのDP-100J試験関連赤本資料です。

DP-100J PDF DEMO:

QUESTION NO: 1
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

QUESTION NO: 2
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 3
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 4
提供されているトレーニングセットを使用して、バイナリ分類モデルを構築しています。
トレーニングセットは2つのクラス間で不均衡です。
データの不均衡を解決する必要があります。
この目標を達成するための3つの可能な方法は何ですか?各正解は完全なソリューションを
示します注:
それぞれの正しい選択には1ポイントの価値があります。
A. モデルの評価指標として精度を使用します。
B. トレーニング機能セットを正規化します。
C. マイノリティクラスで合成サンプルを生成します。
D. 分類にペナルティを科す
E.
アンダーサンプリングまたはオーバーサンプリングを使用してデータセットをリサンプリン
グします
Answer: A,C,E

QUESTION NO: 5
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

Network Appliance NS0-076 - Goldmile-Infobizの問題集を利用してから、試験を受けるときに簡単に対処し、楽に高い点数を取ることができます。 MicrosoftのSalesforce Experience-Cloud-Consultant資格認定証明書を持つ人は会社のリーダーからご格別のお引き立てを賜ったり、仕事の昇進をたやすくなったりしています。 Salesforce Agentforce-Specialist-JPN - この認定は君のもっと輝い職業生涯と未来に大変役に立ちます。 弊社のMicrosoft AI-102ソフト版問題集はかねてより多くのIT事業をしている人々は順調にMicrosoft Microsoft AI-102資格認定を取得させます。 Goldmile-InfobizのMicrosoftのSAP C_S4CPR_2508問題集を購入するなら、君がMicrosoftのSAP C_S4CPR_2508認定試験に合格する率は100パーセントです。

Updated: May 28, 2022