DP-100J関連資格知識 & DP-100J受験対策解説集 - Microsoft DP-100J模擬対策 - Goldmile-Infobiz

そうすれば、あなたはもっと素敵に自分の仕事をやることができ、あなたの優れた能力を他の人に見せることができます。この方法だけであなたはより多くの機会を得ることができます。MicrosoftのDP-100J関連資格知識認定試験は現在のIT領域で本当に人気がある試験です。 今のIT業界の中で、自分の地位を固めたくて知識と情報技術を証明したいのもっとも良い方法がMicrosoftのDP-100J関連資格知識認定試験でございます。がMicrosoftのDP-100J関連資格知識「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認定試験の合格書を取ったら仕事の上で大きな変化をもたらします。 Goldmile-Infobizのサイトはあなたが最も必要なもの、しかもあなたに最適な試験参考書を持っています。

Microsoft Azure DP-100J いろいろな受験生に通用します。

Microsoft Azure DP-100J関連資格知識 - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版) 暇の時間を利用して勉強します。 MicrosoftのDP-100J 資格難易度ソフトを使用するすべての人を有効にするために最も快適なレビュープロセスを得ることができ、我々は、MicrosoftのDP-100J 資格難易度の資料を提供し、PDF、オンラインバージョン、およびソフトバージョンを含んでいます。あなたの愛用する版を利用して、あなたは簡単に最短時間を使用してMicrosoftのDP-100J 資格難易度試験に合格することができ、あなたのIT機能を最も権威の国際的な認識を得ます!

現在の社会で、DP-100J関連資格知識試験に参加する人がますます多くなる傾向があります。市場の巨大な練習材料からDP-100J関連資格知識の学習教材を手に入れようとする人も増えています。私たちのDP-100J関連資格知識試験問題を利用し、ほかの資料が克服できない障害を克服できます。

Microsoft DP-100J関連資格知識 - 成功の楽園にどうやって行きますか。

DP-100J関連資格知識認定試験の準備をするために一生懸命勉強して疲れを感じるときには、他の人が何をしているかを知っていますか。あなたと同じIT認定試験を受験する周りの人を見てください。あなたが試験のために不安と感じているとき、どうして他の人が自信満々で、のんびり見ているのでしょうか。あなたの能力は彼らうより弱いですか。もちろんそんなことはないです。では、なぜ他の人が簡単にDP-100J関連資格知識試験に合格することができるかを知りたいですか。それは彼らがGoldmile-Infobiz のDP-100J関連資格知識問題集を利用したからです。この問題集を勉強することだけで楽に試験に合格することができます。信じないのですか。不思議を思っていますか。では、急いで試してください。まず問題集のdemoを体験することができます。そうすれば、この問題集の品質を確認することができます。はやくGoldmile-Infobizのサイトをクリックしてください。

Goldmile-Infobizは現在の実績を持っているのは受験生の皆さんによって実践を通して得られた結果です。真実かつ信頼性の高いものだからこそ、Goldmile-Infobizの試験参考書は長い時間にわたってますます人気があるようになっています。

DP-100J PDF DEMO:

QUESTION NO: 1
機械学習モデルを使用してインテリジェントなソリューションを構築しています。
環境は次の要件をサポートする必要があります。
*データサイエンティストはクラウド環境でノートブックを構築する必要がある
*データサイエンティストは、機械学習パイプラインで自動フィーチャエンジニアリングと
モデル構築を使用する必要があります。
*動的なワーカー割り当てでSparkインスタンスを使用して再トレーニングするには、ノート
ブックを展開する必要があります。
*ノートブックは、ローカルでバージョン管理するためにエクスポート可能である必要があ
ります。
環境を作成する必要があります。
どの4つのアクションを順番に実行する必要がありますか?回答するには、適切なアクショ
ンをアクションのリストから回答エリアに移動し、正しい順序に並べます。
Answer:
Explanation
Step 1: Create an Azure HDInsight cluster to include the Apache Spark Mlib library Step 2:
Install Microsot Machine Learning for Apache Spark You install AzureML on your Azure
HDInsight cluster.
Microsoft Machine Learning for Apache Spark (MMLSpark) provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark
Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.
Step 3: Create and execute the Zeppelin notebooks on the cluster
Step 4: When the cluster is ready, export Zeppelin notebooks to a local environment.
Notebooks must be exportable to be version controlled locally.
References:
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-zeppelin-notebook
https://azuremlbuild.blob.core.windows.net/pysparkapi/intro.html

QUESTION NO: 2
Azure Machine Learning
Studioで新しい実験を作成します。多くの列に欠損値がある小さなデータセットがあります
。データでは、各列に予測変数を適用する必要はありません。欠落データの処理モジュール
を使用して、欠落データを処理する予定です。
データクリーニング方法を選択する必要があります。
どの方法を使用する必要がありますか?
A. 確率的PACを使用して置換
B. 正規化
C. MICEを使用して交換
D. 合成マイノリティ
Answer: A

QUESTION NO: 3
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 4
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 5
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

Medical Tests PTCE - どんなツールかと聞きたいでしょう。 Microsoft AZ-400-KR - しかも、Goldmile-Infobizは当面の市場で皆さんが一番信頼できるサイトです。 Goldmile-InfobizはMicrosoftのSalesforce ADM-201-JPN試験の最新の問題集を提供するの専門的なサイトです。 Goldmile-InfobizのMicrosoftのMicrosoft AZ-120試験トレーニング資料は正確性が高くて、カバー率も広い。 Goldmile-Infobizは君の早くMicrosoftのWorkday Workday-Pro-Compensation認定試験に合格するために、きみのもっと輝い未来のために、君の他人に羨ましいほど給料のために、ずっと努力しています。

Updated: May 28, 2022