我々はあなたに向いて適当の資料を選びます。しかも、サイトでテストデータの一部は無料です。もっと重要のことは、リアルな模擬練習はあなたがGoogleのProfessional-Data-Engineer更新版試験に受かることに大きな助けになれます。 励ましだけであなたの試験への自信を高めるのは不可能だと知っていますから、我々は効果的なソフトを提供してあなたにGoogleのProfessional-Data-Engineer更新版試験に合格させます。あなたはデモで我々のソフトの効果を体験することができます。 Goldmile-Infobiz で、あなたにあなたの宝庫を見つけられます。
Google Cloud Certified Professional-Data-Engineer 逆境は人をテストすることができます。
これなので、今から我々社Goldmile-InfobizのProfessional-Data-Engineer - Google Certified Professional Data Engineer Exam更新版試験に合格するのに努力していきます。 自分のレベルを高めたいですか。では、仕事に役に立つスキルをもっと身に付けましょう。
弊社は1年間の無料更新サービスを提供いたします。あなたがご使用になっているとき、何か質問がありましたらご遠慮なく弊社とご連絡ください。最近、Google Professional-Data-Engineer更新版試験に合格するのは重要な課題になっています。
Google Professional-Data-Engineer更新版 - どんな質問があっても、すぐ返事できます。
21世紀の情報時代の到着に伴い、GoogleのProfessional-Data-Engineer更新版試験の認定はIT業種で不可欠な認定になっています。初心者にしても、サラリーマンにしても、Goldmile-Infobizは君のために特別なGoogleのProfessional-Data-Engineer更新版問題集を提供します。君は他の人の一半の努力で、同じGoogleのProfessional-Data-Engineer更新版認定試験を簡単に合格できます。Goldmile-Infobizはあなたと一緒に君のITの夢を叶えるために頑張ります。まだなにを待っていますか。
だから、あなたはコンピューターでGoogleのウエブサイトを訪問してください。そうすれば、あなたは簡単にProfessional-Data-Engineer更新版復習教材のデモを無料でダウンロードできます。
Professional-Data-Engineer PDF DEMO:
QUESTION NO: 1
You are building a model to make clothing recommendations. You know a user's fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available.
How should you use this data to train the model?
A. Continuously retrain the model on just the new data.
B. Continuously retrain the model on a combination of existing data and the new data.
C. Train on the new data while using the existing data as your test set.
D. Train on the existing data while using the new data as your test set.
Answer: C
QUESTION NO: 2
For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?
A. Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.
B. Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.
C. Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.
D. Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.
Answer: D
Explanation
It is recommended to create your Compute Engine instance in the same zone as your Cloud Bigtable instance for the best possible performance, If it's not possible to create a instance in the same zone, you should create your instance in another zone within the same region. For example, if your Cloud
Bigtable instance is located in us-central1-b, you could create your instance in us-central1-f. This change may result in several milliseconds of additional latency for each Cloud Bigtable request.
It is recommended to avoid creating your Compute Engine instance in a different region from your
Cloud Bigtable instance, which can add hundreds of milliseconds of latency to each Cloud Bigtable request.
Reference: https://cloud.google.com/bigtable/docs/creating-compute-instance
QUESTION NO: 3
You have an Apache Kafka Cluster on-prem with topics containing web application logs. You need to replicate the data to Google Cloud for analysis in BigQuery and Cloud Storage. The preferred replication method is mirroring to avoid deployment of Kafka Connect plugins.
What should you do?
A. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Sink connector. Use a Dataflow job to read fron PubSub and write to GCS.
B. Deploy a Kafka cluster on GCE VM Instances. Configure your on-prem cluster to mirror your topics to the cluster running in GCE. Use a Dataproc cluster or Dataflow job to read from Kafka and write to
GCS.
C. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a
Source connector. Use a Dataflow job to read fron PubSub and write to GCS.
D. Deploy a Kafka cluster on GCE VM Instances with the PubSub Kafka connector configured as a Sink connector. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
Answer: B
QUESTION NO: 4
Which Google Cloud Platform service is an alternative to Hadoop with Hive?
A. Cloud Datastore
B. Cloud Bigtable
C. BigQuery
D. Cloud Dataflow
Answer: C
Explanation
Apache Hive is a data warehouse software project built on top of Apache Hadoop for providing data summarization, query, and analysis.
Google BigQuery is an enterprise data warehouse.
Reference: https://en.wikipedia.org/wiki/Apache_Hive
QUESTION NO: 5
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
A. Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.
B. In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.
C. In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.
D. Make a call to the Stackdriver API to list all logs, and apply an advanced filter.
Answer: C
GoogleのASIS PSP試験ソフトを買ったあなたは一年間の無料更新サービスを得られて、GoogleのASIS PSPの最新の問題集を了解して、試験の合格に自信を持つことができます。 Microsoft AZ-204-KR - 貴方達の試験に合格させることができないと、すぐに全額で返金いたします。 Amazon AIF-C01 - Goldmile-Infobizの発展は弊社の商品を利用してIT認証試験に合格した人々から得た動力です。 Salesforce Marketing-Cloud-Administrator - たくさんのひとは弊社の商品を使って、試験に順調に合格しました。 Microsoft DP-600J - 試験に合格してからあなたがよりよい仕事と給料がもらえるかもしれません。
Updated: May 27, 2022