勉強中で、何の質問があると、メールで我々はあなたのためにすぐ解決します。心配はありませんし、一心不乱に試験復習に取り組んでいます。他の人はあちこちでGoogle Professional-Data-Engineer資格関連題試験資料を探しているとき、あなたはすでに勉強中で、準備階段でライバルに先立ちます。 これは本当に素晴らしいことです。それにもっと大切なのは、Goldmile-Infobizのサイトは世界的でProfessional-Data-Engineer資格関連題試験トレーニングによっての試験合格率が一番高いです。 だから、弊社のProfessional-Data-Engineer資格関連題練習資料を早く購入しましょう!
Professional-Data-Engineer資格関連題認定試験のようなものはどうでしょうか。
Goldmile-Infobizが提供したGoogleのProfessional-Data-Engineer - Google Certified Professional Data Engineer Exam資格関連題トレーニング資料を利用する方法です。 それと比べるものがありません。専門的な団体と正確性の高いGoogleのProfessional-Data-Engineer 関連問題資料問題集があるこそ、Goldmile-Infobizのサイトは世界的でProfessional-Data-Engineer 関連問題資料試験トレーニングによっての試験合格率が一番高いです。
Goldmile-InfobizのGoogleのProfessional-Data-Engineer資格関連題試験トレーニング資料は全てのオンラインのトレーニング資料で一番よいものです。我々の知名度はとても高いです。これは受験生の皆さんが資料を利用した後の結果です。
Google Professional-Data-Engineer資格関連題 - 人生には様々な選択があります。
弊社のGoogleのProfessional-Data-Engineer資格関連題試験問題集を買うかどうかまだ決めていないなら、弊社のデモをやってみよう。使用してから、あなたは弊社の商品でGoogleのProfessional-Data-Engineer資格関連題試験に合格できるということを信じています。我々Goldmile-Infobizの専門家たちのGoogleのProfessional-Data-Engineer資格関連題試験問題集への更新と改善はあなたに試験の準備期間から成功させます。
また、Goldmile-Infobizは数え切れない受験生を助け、皆さんの信頼と称賛を得ました。ですから、Goldmile-InfobizのProfessional-Data-Engineer資格関連題問題集の品質を疑わないでください。
Professional-Data-Engineer PDF DEMO:
QUESTION NO: 1
You are building a model to make clothing recommendations. You know a user's fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available.
How should you use this data to train the model?
A. Continuously retrain the model on just the new data.
B. Continuously retrain the model on a combination of existing data and the new data.
C. Train on the new data while using the existing data as your test set.
D. Train on the existing data while using the new data as your test set.
Answer: C
QUESTION NO: 2
For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?
A. Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.
B. Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.
C. Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.
D. Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.
Answer: D
Explanation
It is recommended to create your Compute Engine instance in the same zone as your Cloud Bigtable instance for the best possible performance, If it's not possible to create a instance in the same zone, you should create your instance in another zone within the same region. For example, if your Cloud
Bigtable instance is located in us-central1-b, you could create your instance in us-central1-f. This change may result in several milliseconds of additional latency for each Cloud Bigtable request.
It is recommended to avoid creating your Compute Engine instance in a different region from your
Cloud Bigtable instance, which can add hundreds of milliseconds of latency to each Cloud Bigtable request.
Reference: https://cloud.google.com/bigtable/docs/creating-compute-instance
QUESTION NO: 3
You have an Apache Kafka Cluster on-prem with topics containing web application logs. You need to replicate the data to Google Cloud for analysis in BigQuery and Cloud Storage. The preferred replication method is mirroring to avoid deployment of Kafka Connect plugins.
What should you do?
A. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a Sink connector. Use a Dataflow job to read fron PubSub and write to GCS.
B. Deploy a Kafka cluster on GCE VM Instances. Configure your on-prem cluster to mirror your topics to the cluster running in GCE. Use a Dataproc cluster or Dataflow job to read from Kafka and write to
GCS.
C. Deploy the PubSub Kafka connector to your on-prem Kafka cluster and configure PubSub as a
Source connector. Use a Dataflow job to read fron PubSub and write to GCS.
D. Deploy a Kafka cluster on GCE VM Instances with the PubSub Kafka connector configured as a Sink connector. Use a Dataproc cluster or Dataflow job to read from Kafka and write to GCS.
Answer: B
QUESTION NO: 4
Which Google Cloud Platform service is an alternative to Hadoop with Hive?
A. Cloud Datastore
B. Cloud Bigtable
C. BigQuery
D. Cloud Dataflow
Answer: C
Explanation
Apache Hive is a data warehouse software project built on top of Apache Hadoop for providing data summarization, query, and analysis.
Google BigQuery is an enterprise data warehouse.
Reference: https://en.wikipedia.org/wiki/Apache_Hive
QUESTION NO: 5
You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?
A. Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.
B. In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.
C. In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.
D. Make a call to the Stackdriver API to list all logs, and apply an advanced filter.
Answer: C
我々はあなたのGoogleのCompTIA N10-009J試験への成功を確保しているだけでなく、楽な準備過程と行き届いたアフターサービスを承諾しています。 Microsoft PL-200J認定試験はたいへん難しい試験ですね。 あなたはGoogleのMicrosoft MB-500の資料を探すのに悩んでいますか。 無論Goldmile-InfobizのGoogleのGoogle Associate-Cloud-Engineer-JPN問題集が一番頼りになります。 APMG-International ISO-IEC-27001-Foundation - ご購入のあとで我々はアフターサービスを提供します。
Updated: May 27, 2022