DP-100J資格講座、DP-100J問題数 - Microsoft DP-100J参考資料 - Goldmile-Infobiz

はやくGoldmile-InfobizのDP-100J資格講座問題集を入手しましょう。この問題集を持っていたら、どうやって効率的に試験の準備をすべきなのかをよく知るようになります。このDP-100J資格講座問題集はあなたを楽に試験に合格させる素晴らしいツールですから、この成功できチャンスを見逃せば絶対後悔になりますから、尻込みしないで急いで行動しましょう。 勉強中で、何の質問があると、メールで我々はあなたのためにすぐ解決します。心配はありませんし、一心不乱に試験復習に取り組んでいます。 Goldmile-InfobizのMicrosoftのDP-100J資格講座の試験問題と解答は当面の市場で最も徹底的な正確的な最新的な模擬テストです。

Microsoft Azure DP-100J それに、あなたに極大な便利と快適をもたらせます。

弊社のDP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)資格講座問題集は大勢の専門家たちの努力で開発される成果です。 近年、IT業種の発展はますます速くなることにつれて、ITを勉強する人は急激に多くなりました。人々は自分が将来何か成績を作るようにずっと努力しています。

古く時から一寸の光陰軽るんずべからずの諺があって、あなたはどのぐらい時間を無駄にすることができますか?現時点からGoldmile-InfobizのDP-100J資格講座問題集を学んで、時間を効率的に使用するだけ、DP-100J資格講座知識ポイントを勉強してMicrosoftのDP-100J資格講座試験に合格できます。短い時間でDP-100J資格講座資格認定を取得するような高いハイリターンは嬉しいことではないでしょうか。

Microsoft DP-100J資格講座 - 人生には様々な選択があります。

あなたはIT業界の玄人になりたいですか?ここでMicrosoft DP-100J資格講座認定試験の問題集をお勧めます。DP-100J資格講座認定試験の問題集は大勢の人の注目を集め、とても人気がある商品です。DP-100J資格講座認定試験の問題集はなぜそんなに人気がありますか?DP-100J資格講座認定試験の問題集は最も全面的なIT知識を提供できるからです。では、躊躇しなくて、Microsoft DP-100J資格講座認定試験の問題集を早く購入しましょう!

このような保証があれば、Goldmile-InfobizのDP-100J資格講座問題集を購入しようか購入するまいかと躊躇する必要は全くないです。この問題集をミスすればあなたの大きな損失ですよ。

DP-100J PDF DEMO:

QUESTION NO: 1
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 2
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 3
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 4
注:この質問は、同じシナリオを提示する一連の質問の一部です。シリーズの各質問には、
記載された目標を達成する可能性のある独自のソリューションが含まれています。一部の質
問セットには複数の正しい解決策がある場合もあれば、正しい解決策がない場合もあります

このセクションの質問に回答すると、その質問に戻ることはできません。その結果、これら
の質問はレビュー画面に表示されません。
複数の列に欠損値を含む数値データセットを分析しています。
機能セットの次元に影響を与えることなく、適切な操作を使用して欠損値を消去する必要が
あります。
すべての値を含めるには、完全なデータセットを分析する必要があります。
解決策:連鎖方程式による多重代入(MICE)メソッドを使用して、各欠損値を置き換えま
す。
ソリューションは目標を達成していますか?
A. はい
B. いいえ
Answer: A
Explanation
Replace using MICE: For each missing value, this option assigns a new value, which is calculated by using a method described in the statistical literature as "Multivariate Imputation using Chained Equations" or
"Multiple Imputation by Chained Equations". With a multiple imputation method, each variable with missing data is modeled conditionally using the other variables in the data before filling in the missing values.
Note: Multivariate imputation by chained equations (MICE), sometimes called "fully conditional specification" or "sequential regression multiple imputation" has emerged in the statistical literature as one principled method of addressing missing data. Creating multiple imputations, as opposed to single imputations, accounts for the statistical uncertainty in the imputations. In addition, the chained equations approach is very flexible and can handle variables of varying types (e.g., continuous or binary) as well as complexities such as bounds or survey skip patterns.
References:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074241/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/clean- missing-data

QUESTION NO: 5
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

しかし、Microsoftのウエブサイトを見ると、すぐいいMicrosoft MB-335教材を手に入れることができます。 VMware 250-614 - しかし、難しい試験といっても、試験を申し込んで受験する人が多くいます。 もしあなたはまだ合格のためにMicrosoft Microsoft AZ-305に大量の貴重な時間とエネルギーをかかって一生懸命準備し、Microsoft Microsoft AZ-305「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」認証試験に合格するの近道が分からなくって、今はGoldmile-Infobizが有効なMicrosoft Microsoft AZ-305認定試験の合格の方法を提供して、君は半分の労力で倍の成果を取るの与えています。 ACAMS CAMS-JP - ですから、君はうちの学習教材を安心で使って、きみの認定試験に合格することを保証します。 HP HPE0-J83 - 君の初めての合格を目標にします。

Updated: May 28, 2022