DP-100J関連日本語版問題集 & DP-100J受験料過去問 - Microsoft DP-100J出題内容 - Goldmile-Infobiz

Goldmile-Infobizは長年の努力を通じて、MicrosoftのDP-100J関連日本語版問題集認定試験の合格率が100パーセントになっていました。うちのMicrosoftのDP-100J関連日本語版問題集問題集を購入する前に、一部分のフリーな試験問題と解答をダンロードして、試用してみることができます。無料サンプルのご利用によってで、もっとうちの学習教材に自信を持って、君のベストな選択を確認できます。 弊社が提供した問題集がほかのインターネットに比べて問題のカーバ範囲がもっと広くて対応性が強い長所があります。Goldmile-Infobizが持つべきなIT問題集を提供するサイトでございます。 あなたはGoldmile-Infobizの学習教材を購入した後、私たちは一年間で無料更新サービスを提供することができます。

Microsoft Azure DP-100J Goldmile-Infobizは全面的に受験生の利益を保証します。

DP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)関連日本語版問題集練習問題をちゃんと覚えると、DP-100J - Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)関連日本語版問題集に合格できます。 うちのMicrosoftのDP-100J 問題と解答問題集を購入したら、私たちは一年間で無料更新サービスを提供することができます。もし学習教材は問題があれば、或いは試験に不合格になる場合は、全額返金することを保証いたします。

だから、DP-100J関連日本語版問題集試験参考書に関連して、何か質問がありましたら、遠慮無く私たちとご連絡致します。私たちのサービスは24時間で、短い時間で回答できます。私たちのDP-100J関連日本語版問題集試験参考書は、あなたがDP-100J関連日本語版問題集試験に合格する前に最高のサービスを提供することを保証します。

Microsoft DP-100J関連日本語版問題集 - ふさわしい方式を選ぶのは一番重要なのです。

DP-100J関連日本語版問題集「Designing and Implementing a Data Science Solution on Azure (DP-100日本語版)」はMicrosoftの一つ認証試験として、もしMicrosoft認証試験に合格してIT業界にとても人気があってので、ますます多くの人がDP-100J関連日本語版問題集試験に申し込んで、DP-100J関連日本語版問題集試験は簡単ではなくて、時間とエネルギーがかかって用意しなければなりません。

現在あなたに提供するのは大切なMicrosoftのDP-100J関連日本語版問題集資料です。あなたの購入してから、我々はあなたにMicrosoftのDP-100J関連日本語版問題集資料の更新情況をつど提供します。

DP-100J PDF DEMO:

QUESTION NO: 1
x.1、x2、およびx3の機能に対してscikit-learn
Pythonライブラリを使用して、機能のスケーリングを実行しています。
元のデータとスケーリングされたデータを次の図に示します。
ドロップダウンメニューを使用して、グラフィックに表示される情報に基づいて各質問に回
答する回答選択肢を選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: StandardScaler
The StandardScaler assumes your data is normally distributed within each feature and will scale them such that the distribution is now centred around 0, with a standard deviation of 1.
Example:
All features are now on the same scale relative to one another.
Box 2: Min Max Scaler
Notice that the skewness of the distribution is maintained but the 3 distributions are brought into the same scale so that they overlap.
Box 3: Normalizer
References:
http://benalexkeen.com/feature-scaling-with-scikit-learn/

QUESTION NO: 2
モデルトレーニング要件に合わせて、順列機能の重要度モジュールを構成する必要がありま
す。
あなたは何をするべきか?回答するには、回答領域のダイアログボックスで適切なオプショ
ンを選択します。
注:それぞれの正しい選択には1ポイントの価値があります。
Answer:
Explanation
Box 1: 500
For Random seed, type a value to use as seed for randomization. If you specify 0 (the default), a number is generated based on the system clock.
A seed value is optional, but you should provide a value if you want reproducibility across runs of the same experiment.
Here we must replicate the findings.
Box 2: Mean Absolute Error
Scenario: Given a trained model and a test dataset, you must compute the Permutation
Feature Importance scores of feature variables. You need to set up the Permutation Feature
Importance module to select the correct metric to investigate the model's accuracy and replicate the findings.
Regression. Choose one of the following: Precision, Recall, Mean Absolute Error , Root
Mean Squared Error, Relative Absolute Error, Relative Squared Error, Coefficient of
Determination References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/permutation-feature-importan

QUESTION NO: 3
分類タスクを解決しています。
データセットが不均衡です。
あなたは、分類精度を向上させるためにAzureの機械学習Studioのモジュールを選択する必
要があります。
あなたはどちらのモジュールを使用する必要がありますか?
A. フィルタに基づく機能の選択
B. 順列機能の重要性
C. フィッシャー線形判別分析。
D. の合成少数オーバーサンプリング技術(撃ち)
Answer: D
Explanation
Use the SMOTE module in Azure Machine Learning Studio (classic) to increase the number of underepresented cases in a dataset used for machine learning. SMOTE is a better way of increasing the number of rare cases than simply duplicating existing cases.
You connect the SMOTE module to a dataset that is imbalanced. There are many reasons why a dataset might be imbalanced: the category you are targeting might be very rare in the population, or the data might simply be difficult to collect. Typically, you use SMOTE when the class you want to analyze is under-represented.
Reference:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote

QUESTION NO: 4
Azure Machine Learning Studioを使用してデータセットを分析しています。
各機能列のp値と一意の値カウントを含む統計サマリーを生成する必要があります。
ユーザーはどちらのモジュールを使用できますか?それぞれの正解は完全な解決策を提示し
ます。
注:それぞれの正しい選択には1ポイントの価値があります。
A. インジケーター値に変換
B. カウントテーブルのエクスポート
C. 線形相関の計算
D. データの要約
E. Pythonスクリプトの実行
Answer: B,C
Explanation
The Export Count Table module is provided for backward compatibility with experiments that use the Build Count Table (deprecated) and Count Featurizer (deprecated) modules.
E: Summarize Data statistics are useful when you want to understand the characteristics of the complete dataset. For example, you might need to know:
How many missing values are there in each column?
How many unique values are there in a feature column?
What is the mean and standard deviation for each column?
The module calculates the important scores for each column, and returns a row of summary statistics for each variable (data column) provided as input.
References:
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/export- count-table
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/summarize-data

QUESTION NO: 5
提供されているトレーニングセットを使用して、バイナリ分類モデルを構築しています。
トレーニングセットは2つのクラス間で不均衡です。
データの不均衡を解決する必要があります。
この目標を達成するための3つの可能な方法は何ですか?各正解は完全なソリューションを
示します注:
それぞれの正しい選択には1ポイントの価値があります。
A. モデルの評価指標として精度を使用します。
B. トレーニング機能セットを正規化します。
C. マイノリティクラスで合成サンプルを生成します。
D. 分類にペナルティを科す
E.
アンダーサンプリングまたはオーバーサンプリングを使用してデータセットをリサンプリン
グします
Answer: A,C,E

Nutanix NCP-MCI-6.10 - しかし必ずしも大量の時間とエネルギーで復習しなくて、弊社が丹精にできあがった問題集を使って、試験なんて問題ではありません。 弊社のMicrosoftのMicrosoft DP-700J真題によって、資格認定証明書を受け取れて、仕事の昇進を実現できます。 MicrosoftのSAP C_ARCON_2508認定試験は競争が激しい今のIT業界中でいよいよ人気があって、受験者が増え一方で難度が低くなくて結局専門知識と情報技術能力の要求が高い試験なので、普通の人がMicrosoft認証試験に合格するのが必要な時間とエネルギーをかからなければなりません。 どのようにMicrosoft Amazon DOP-C02-KR試験に準備すると悩んでいますか。 SAP C_S4PM2_2507 - 良い対応性の訓練が必要で、Goldmile-Infobiz の問題集をお勧めます。

Updated: May 28, 2022